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Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors.
Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean
networks with one input per node can be seen as graphs of random maps. We introduce an approach to
investigating random maps and finding analytical results for attractors in random Boolean networks with the
corresponding topology. Approximating some other non-chaotic networks to be of this class, we apply the
analytic results to them. For this approximation, we observe a strikingly good agreement on the numbers of
attractors of various lengths. We also investigate observables related to the average number of attractors in
relation to the typical number of attractors. Here, we find strong differences that highlight the difficulties in
making direct comparisons between random Boolean networks and real systems. Furthermore, we demonstrate
the power of our approach by deriving some results for random maps. These results include the distribution of
the number of components in random maps, along with asymptotic expansions for cumulants up to the fourth
order.
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I. INTRODUCTION

Random Boolean networks have long enjoyed the atten-
tion of researchers, both in their own right and as simplistic
models, in particular for gene regulatory networks. These
networks are comparatively easy to investigate using com-
puters or analytical methods, yet capable of non-trivial dy-
namics.

A random Boolean network consists of a number of nodes
that each holds a Boolean value �TRUE or FALSE�. Every node
is associated with a rule, i.e., a Boolean function, that de-
pends on the values of some selected input nodes. The state
of all nodes in the network thus gives a Boolean output value
for each node, and a node’s state can be updated to this
value. The network state is evolved with time by repeatedly
updating the values, in a temporal order determined by a
predefined strategy.

The Boolean rules and their inputs are usually selected at
random, drawing from simple distributions. There are several
strategies for updating the networks, but most commonly all
the nodes are updated at the same time. As with any deter-
ministic scheme, the network dynamics is then fully de-
scribed by the properties of the relatively small state space.
Networks of this kind have been investigated extensively,
see, e.g., Refs. �1–7�. In these publications, the link between
perturbation propagation and attractor structure has received
much attention.

If the network is such that small perturbations tend to die
out, the dynamics is said to be ordered or subcritical. For a
typical network of this kind, there are relatively few attrac-
tors, and a typical attractor is a fixed point or a short cycle.
If, on the other hand, perturbations tend to increase with
time, the network dynamics is said to be supercritical, and it

resembles chaos. Although a deterministic discrete system
cannot be truly chaotic, the period of a typical attractor
grows exponentially with system size, and the attractors are
similar to random walks in the state space. Networks at the
borderline, where a small perturbation on average maintains
its original size, are said to be critical. The dynamics in such
networks lies between the two extremes of ordered and cha-
otic behavior. In many aspects, the critical case is the most
interesting one, where non-trivial results tend to emerge, see,
e.g., Ref. �2�.

The networks we consider are, generally speaking, such
where the inputs to each node are chosen randomly with
equal probability among all nodes, and where the Boolean
rules of the nodes are picked randomly and independently
from some distribution. A prime example is Kauffman net-
works �1�, where all nodes have K inputs and rules are gen-
erated with a fixed probability p of returning TRUE for each
input state.

In our more general case, realizing a network of N nodes
still consists of steps that are taken independently for each
node, but from arbitrary, predefined distributions of inputs
and rules. There are three steps to be performed for each
node:

�a� Pick the number of inputs, called in-degree or connec-
tivity and here denoted Kin, from the predefined in-degree
distribution.

�b� Pick a Boolean function of Kin inputs from the pre-
defined distribution of rules, and let this be the rule of the
node.

�c� Pick Kin nodes that will serve as the inputs to the rule,
giving equal probability to all nodes. This step may either be
done without replacement, so that a node can only be chosen
once, or with replacement, so that a rule can use the same
node for two �or more� of its inputs. In either case, the out-
degrees of the nodes will be described by a Poisson distribu-
tion when N is large. After a network has been realized, all
rules and connections are fixed as the network dynamics is
investigated.
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The network dynamics under consideration is given by
synchronous updating of the nodes. At any given time step t,
each node has a state of TRUE or FALSE. The state of any
node at time t+1 is that which its Boolean rule produces
when applied to the states of the input nodes at time t. Con-
sequently, the entire network state is updated deterministi-
cally, and any trajectory in state space will eventually be-
come periodic. Thus, the state space consists of attractor
basins and attractors of varying length, and it always has at
least one attractor.

In this work we determine analytically the numbers of
attractors of different lengths in networks with connectivity
�in-degree� one. We compare these results to networks of
higher connectivity and find a remarkable degree of agree-
ment, meaning that networks of single-input nodes can be
employed to approximate more complicated networks, even
for small systems. For large networks, a reasonable level of
correspondence is expected. See Ref. �8� on effective con-
nectivity for critical networks, and Ref. �9� on the limiting
numbers of cycles in subcritical networks.

The qualitative results of our analytic derivations can
largely be extracted from earlier works, but most of the cor-
responding quantitative results are new. Although the precise
expressions may tell much about dynamics in synchronously
updated random Boolean networks with in-degree one, we
think that our findings are more valuable in other contexts.
First, our approach is not limited to the synchronous updat-
ing scheme, nor to Boolean systems. Second, the strong
similarities between dynamics in networks with in-degree
one and in networks with higher in-degree suggest that valu-
able understanding of complicated networks may be gained
from networks with in-degree one. The second point
strengthens the first one considerably, because almost any
realistic model will have nodes with connectivity larger than
one.

Random Boolean networks with connectivity one have
been investigated analytically in earlier work �10,11�. In
those papers, a graph-theoretic approach was employed. The
approach in Ref. �11� starts with a derivation that also is
directly applicable to random maps. For a random Boolean
network with connectivity one, a random map can be formed
from the network topology. Every node has a rule that takes
its input from a randomly chosen node. The operation of
finding the input node to a given node forms a map from the
set of nodes into itself. This map satisfies the properties of a
random map.

For highly chaotic networks, with many inputs per node,
the state space can be compared to a random map. Networks
where every state is randomly mapped to a successor state
are investigated in Ref. �12�.

In Ref. �11�, only attractors with large attractor basins are
considered, and the main results are on the distribution of
attractor basin sizes. We extend these calculations and are
able to also consider attractors with small attractor basins,
and include these in the observables we investigate. Refer-
ence �10� focuses on proving superpolynomial scaling, with
system size, in the average number of attractors, as well as in
the average attractor length, for critical networks with in-
degree one. Our calculations reveal more details for cycles of
specific lengths.

For long cycles, especially in large networks, there are
some artifacts that make direct comparisons to real networks
difficult. For example, the integer divisibility of the cycle
length is important, see, e.g., Refs. �8,9,11,13,14�. Also, the
average number of attractors grows superpolynomially with
system size in critical networks �10,13�, and most of the
attractors have tiny attractor basins as compared to the full
state space �6,13,15�. In this work such artifacts become par-
ticularly apparent, and we think that long cycles are hard to
connect to real dynamical systems.

On the other hand, comparisons to real dynamical systems
still seem to be relevant with regard to fixed points and some
stability properties �9,16�. An interesting way to make more
realistic comparisons regarding cycles is to consider those
attractors that are stable with respect to repeated infinitesimal
changes in the timing of updating events �17�.

Our approach provides a convenient starting point for in-
vestigations of random maps in general. Random maps have
been the subject of extensive studies, see, e.g., Refs. �18–26�,
and also Ref. �27� for a book that includes this subject. For
networks with in-degree one, our approach enables analytical
investigations of far more observables than have been ana-
lytically accessible with previously presented methods. This
could provide a starting point for understanding more com-
plicated networks, and a tool for seeking observables that
may reveal interesting properties in comparisons to real sys-
tems.

Several results on random maps can be obtained in a
straightforward manner from our approach. One key prop-
erty of a random map is the number of components in the
functional graph, i.e., the number of separated islands in the
corresponding network. We rederive a relatively simple ex-
pression for the distribution of the number of components,
along with asymptotic expansions for cumulants up to the
fourth order. To a large extent, the asymptotic results are
new.

In Sec. III, we show some numerical comparisons be-
tween random Boolean networks of multi-input nodes and
networks with connectivity one. The results show similarities
that are stronger than we had expected. In future research, it
is possible that the connection between networks with single-
and multi-input nodes could be better understood by combin-
ing our approach with results and ideas from Ref. �14�. In
Ref. �14�, the connected Boolean networks consisting of one
two-input node and an arbitrary number of single-input
nodes are investigated. Although there are difficulties in
comparing attractor properties directly with real dynamical
systems, a satisfactory explanation of the similarities be-
tween these networks, with single vs multiple inputs per
node, may provide keys to the understanding of dynamics in
networks in general.

II. THEORY

In a network with only one-input nodes, the network to-
pology can be described as a set of loops with trees of nodes
connected to them. To understand the distribution of attrac-
tors of different lengths, it is sufficient to consider the loops.
All nodes outside the loops will after a short transient time
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act as slaves to the nodes in the loops. Also, the nodes in a
loop that contains at least one constant rule, will reach a
fixed final state after a short time.

All nodes that are relevant to the attractor structure are
contained in loops with only non-constant �information-
conserving� rules. In other words, all the relevant elements,
as described in Ref. �5�, are contained in such loops. We let
� denote the number of information-conserving loops and let
�̂ denote the number of nodes in such loops.

We divide the calculations of the wanted observables into
two steps. First, we present general considerations for loop-
dependent observables. Then, we apply the general results to
investigate observables connected to the attractor structure.
Before the second step, we derive expressions for the distri-
butions of � and �̂, together with asymptotic expansions for
corresponding means and variances, to illustrate the meaning
and power of the general expressions.

A. Basic network properties

Throughout this paper, N denotes the number of nodes in
the network, and L the length of an attractor, be it a cycle
�L�1� or a fixed point �L=1�. For brevity we use the term L
cycle, and understand this to mean an attractor such that
taking L time steps forward produces the initial state. When
L is the smallest positive integer fulfilling this, we speak of a
proper L cycle. We denote the number of proper L cycles, for
a given network realization, by CL. The arithmetic mean over
realizations of networks of a size N is denoted by �CL�N, so
the mean number of network states that are part of a proper L
cycle is L�CL�N.

Related to CL is �L, the number of states that reappear
after L time steps and hence are part of any L cycle, proper
or not. Analogous to �CL�N, we let ��L�N denote the average
of �L for networks with N nodes. If ��L�N is known for all
L , �CL�N can be calculated from the set theoretic principle of
inclusion-exclusion. See Supporting Text to Ref. �9�.

For large N, the value of �CL�N is often misleading, in the
sense that some rarely occurring networks with extremely
many attractors dominate the average. To better understand
this phenomenon, we introduce the observables RN

L and
��L�N

G. RN
L denotes the probability that �L�0 for a random

network of N nodes, and ��L�N
G is the geometric mean of �L

for N-node networks with �L�0.
In the case that every node has one input, the quantities

��L�N, RN
L , and ��L�N

G can be calculated analytically for any
N. In the one-input case, the large-N limit of ��L�N , ��L��, is
identical to the corresponding limit for subcritical networks
of multi-input nodes, as derived in Ref. �9�. Furthermore, we
discuss to what extent critical networks of multi-input nodes
are expected to show similarities to networks of single-input
nodes.

For random Boolean networks of one-input nodes, there
are only two relevant control parameters in the model de-
scription, apart from the system size N. There are four pos-
sible Boolean rules with one input. These are the constant
rules, TRUE and FALSE, together with the information-
conserving rules that either copy or invert the input. The

distribution of TRUE vs FALSE is irrelevant for the attractor
structure of the network. Hence, the relevant control param-
eters are the probabilities of selecting inverters and copy op-
erators when a rule is randomly chosen. We let rC and rI

denote the selection probabilities associated with copy opera-
tors and inverters, respectively.

In networks with one-input nodes, the total probability of
selecting an information-conserving rule is r�rC+rI. In
analogy with the definition of r, we also define �r�rC−rI.
In most cases it is more convenient to work with r and �r
than with rC and rI. The quantities r and �r can also be seen
as measures of how a network responds to a small perturba-
tion. From this viewpoint, r and �r are average growth fac-
tors for a random perturbation during one time step. For r,
the size of the perturbation is measured with the Hamming
distance to an unperturbed network. For �r, the Hamming
distance is replaced by the difference in the number of TRUE

values at the nodes.
To get suitable perturbation-based definitions of r and �r,

we consider the following procedure: Find the mean field
equilibrium fraction of nodes that have the value TRUE. Pick
a random state from this equilibrium as an initial configura-
tion. Let the system evolve one time step, with and without
first toggling the value of a randomly selected node. The
average fraction of nodes that in both cases copy or invert
the state of the selected node are rC and rI, respectively.
Finally, let r=rC+rI and �r=rC−rI.

It is easy to check that the perturbation-based definitions
of r and �r are consistent with the rule selection probabili-
ties for networks of single-input nodes. By using
perturbation-based definitions of r and �r, those quantities
are well-defined for networks with multiple inputs per node
�9�, and this allows for direct comparisons to networks with
one-input nodes.

B. Products of loop observables

In all of our analytical derivations for networks of single-
input nodes, we have a common starting point: We consider
observables, on the network, that can be expressed as a prod-
uct of observables associated with the loops in the network.

To make a more precise description, we let N be any
network of single-input nodes, and � be the number of loops
in N. The dynamical properties of a loop are determined by
its length ��Z+, and a property s� �0, + ,−	 that we refer to
as the sign of the loop. For a loop that does not conserve
information, i.e., a loop that has at least one constant node,
s=0. All other loops have only inverters and copy operators.
If the number of inverters is even then s=+, and if it is odd
s=−.

Let g�
s denote a quantity that is fully determined by the

length � and the sign s of a loop. We define the product
G�N� of the loop observable g�

s in N as

G�N� � 

i=1

�

g�i

si , �1�

where �1 , . . . ,�� and s1 , . . . ,s� are the lengths and signs, re-
spectively, of the loops in the network N.

RANDOM MAPS AND ATTRACTORS IN RANDOM… PHYSICAL REVIEW E 72, 046112 �2005�

046112-3



If the network topology is given, but the rules are ran-
domized independently at each node, the average of G�N�
can be calculated according to

�G��� = 

i=1

�

�g��i
, �2�

where �� ���1 , . . . ,���, and �g�� is the average of g�
s under

random choice of rules.
We proceed by also taking the randomization of the net-

work topology into account. Let �� denote the number of
loops of lengths �=1,2 , . . ., and let �� ���1 ,�2 , . . . �. Then,
the average of �G��� over network topologies, in networks
with N nodes, can be written as

�G�N = �
���N�

PN����

�=1

�

��g�����, �3�

where PN���� is the probability that the distribution of loop
lengths is described by �� in a network with N nodes. We use
infinities in the ranges of the sum and the product for formal
convenience. Bear in mind that PN���� is nonzero only for
such distributions of loop lengths as are achievable with N
nodes.

From Ref. �11�, we know that

PN���� =
�̂

N

N!

�N − �̂�!N�̂ 

�=1

�
1

��!���
, �4�

where

�̂ � �
�=1

�

���. �5�

Equation �4� provides a fundamental starting point for all of
our derivations. In its raw form, however, Eq. �4� is difficult
to work with. In Appendix A we present how to combine Eq.
�4� with Eq. �3�, to obtain

�G�N = �
1 +
�z

N
�N�

z=0
exp �

�=1

�
�g�� − 1

�
z�. �6�

To continue from Eq. �6�, we express �g�� in terms of
more fundamental quantities. With rC and rI as the probabili-
ties that the rule at any given node is a copy operator or an
inverter, respectively, the probability p�

+ that a loop of length
� has an even number of inverters is given by

p�
+ =

1

2
��rC + rI�� + �rC − rI��� . �7�

Similarly, the probability for an odd number of inverters is
given by

p�
− =

1

2
��rC + rI�� − �rC − rI��� . �8�

With r�rC+rI and �r�rC−rI, we see that

p�
+ =

1

2
�r� + ��r��� , �9�

p�
− =

1

2
�r� − ��r��� , �10�

and

p�
0 = 1 − r�. �11�

A loop that does not conserve information will always
reach a specific state in a limited number of time steps. Such
loops are not relevant for the attractor properties we are in-
terested in. Thus, g�

0 should not alter the products, and we
have g�

0 =1. This gives us

�g�� = p�
+g�

+ + p�
−g�

− + p�
0g�

0 �12�

= g̃� + 1 − r�, �13�

where

g̃� =
1

2
�r� + ��r���g�

+ +
1

2
�r� − ��r���g�

−. �14�

Insertion of Eq. �13� into Eq. �6� and the power series
expansion of ln�1−x� yield

�G�N = �
1 +
�z

N
�N�

z=0
�1 − rz� exp �

�=1

�
g̃�

�
z�. �15�

Equation �15� is the starting point for all network properties
we calculate.

C. Network topology

In this section, we investigate the distributions of the
number of information-conserving loops � and the number
of nodes in those loops, �̂. Both � and �̂ are independent of
whether the information-conserving loops have positive or
negative signs. This means that g�

+=g�
− for all �=1,2 , . . ..

Hence, we let g�
±�g�

+=g�
−, and get

g̃� = g�
±r�, �16�

which means that Eq. �15� turns into

�G�N = �
1 +
�z

N
�N�

z=0
�1 − rz�exp �

�=1

�
g�

±

�
�rz��. �17�

To investigate the distributions of � and �̂, we will use
generating functions. A generating function is a function
such that a desired quantity can be extracted by calculating
the coefficients in a power series expansion.

Let �wk� denote the operator that extracts the kth coeffi-
cient in a power series expansion of a function of w. Then,
the probabilities for specific values of � and �̂, in N-node
networks, are given by

PN�� = k� = �wk��G�N, if g�
± � w �18�

and

PN��̂ = k� = �wk��G�N, if g�
± � w�. �19�

In Eq. �18�, every loop is counted as one, in powers of w,
whereas in Eq. �19�, every node in each loop corresponds to
one factor of w.
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For probability distributions described by generating
functions, there are convenient ways to extract the statistical
moments. Let m denote � or �̂. Then, �m� and �m2� can be
calculated according to

�m� = ��w�w=1�
k=0

�

PN�m = k�wk �20�

= ��w�w=1�G�N �21�

and

�m2� = �1 + �w���w�w=1�
k=0

�

PN�m = k�wk �22�

=�1 + �w���w�w=1�G�N. �23�

Starting from Eqs. �18�–�23�, we derive some results for
� and �̂. The derivations are presented in Appendix C. For
large N, the probability distribution of � approaches a Pois-
son distribution with average ln�1/ �1−r��, whereas the lim-
iting distribution of �̂ decays exponentially as P��̂=k��rk.

In Appendix C, we also calculate asymptotic expansions
for the mean values and variances of � and �̂, in the case
that r=1. The technique to derive asymptotic expansions for
products of loop observables is presented in Appendix B.

For r=1, � is equivalent to the number of components in
a random map. Similarly, �̂ corresponds to the size of the
invariant set in a random map. The invariant set is the set of
all elements that can be mapped to themselves if the map is
iterated a suitable number of times. Such elements are lo-
cated on loops in the network graph.

Using the tools in Appendixes B and C, one can equally
well derive asymptotic expansions for higher statistical mo-
ments as for the mean and variance. In Sec. III, we state the
leading orders of the asymptotic expansions for the third and
fourth order cumulants to the distribution of the number of
components in a random map.

D. On the number of states in attractors

For a given Boolean network with in-degree one, the
number of states �L in L cycles can be expressed as a prod-
uct of loop observables. If �L is calculated separately for
every loop in the network, the product of these quantities
gives �L for the whole network.

Every loop with an even number of inverters and length �
can have 2gcd��,L� states that are repeated after L timesteps,
where gcd�a ,b� denotes the greatest common divisor of a
and b. Hence, such a loop will contribute with the factor
g�

+=2gcd��,L� to the product. Similarly, for a loop with an odd
number of inverters, this factor is g�

−=2gcd��,L� if L /gcd�� ,L�
is even and g�

−=0 otherwise. The requirement that
L /gcd�� ,L� is even comes from the fact that the state of the
loop should be inverted an even number of times during L
timesteps.

The condition that L /gcd�� ,L� is even can be reformu-

lated in terms of divisibility by powers of 2. Let �̃L denote

the the maximal integer power of 2 such that �̃L �L, where the
relation � means that the number on the left hand side is a
divisor to the number on the right hand side. Then, we get

L/gcd��,L�odd ⇔ �̃L�� . �24�

With

g�
+ = 2gcd��,L� �25�

and

g�
− =�2gcd��,L�, if �̃L�”�

0, if �̃L�� .
� �26�

inserted into Eq. �14�, we get

g̃� = 2gcd��,L��r�, if �̃L�”�
1

2
�r� + ��r��� , if �̃L�� . � �27�

Now, ��L�N can be calculated from the insertion of Eq.
�27� into Eq. �15�. The arithmetic mean, ��L�N, is, however,
in many cases a bad measure of �L for a typical network. To
see this, we investigate the geometric mean of �L.

We let ��L�N
G be the geometric mean of nonzero �L, and

RN
L be the probability that �L�0, for networks of size N.

The probability distribution of log2 �L is generated by a
product of loop observables according to

PN�log2 �L = k� = �wk��G�N, �28�

with

g̃� = wgcd��,L��r�, if �̃L�”�
1

2
�r� + ��r��� , if �̃L�� . � �29�

The probability that �L=0 is not included in Eq. �28� for
k�N. All other possible values of �L are included, and this
means that

�RN
L = �w=1�G�N. �30�

Furthermore, it is clear that

RN
L log2��L�N

G = RN
L�log2�L�N �31�

= ��w�w=1�G�N, �32�

where the average of log2 �L is calculated with respect to
networks with �L�0.

Insertion of Eq. �29� into Eq. �15� yields

�G�N = �
1 +
�z

N
�N�

z=0
FL�w,z� , �33�

where
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FL�w,z� = �1 − rz�exp �
�=1

�
wgcd��,L�

�
r�z�

	 exp �
k=1

�
wgcd�k�̃L,L�

2k�̃L

���r�k�̃L − rk�̃L�zk�̃L,

�34�

where �̃L is the largest integer power of 2 that divides L.
FL provides a convenient way to describe our results thus

far. We have

��L�N = �
1 +
�z

N
�N�

z=0
FL�2,z� , �35�

RN
L = �
1 +

�z

N
�N�

z=0
FL�1,z� , �36�

and

��L�N
G = exp� ln 2

RN
L �
1 +

�z

N
�N

�w� z=0
w=1

FL�w,z�� . �37�

Note that L=0 can be inserted directly into Eq. �34� to
investigate the distribution of the total number of states in
attractors. This works because zero is divisible by any non-
zero number, and hence gcd�� ,0�=� for all ��Z+. Insertion
of L=0 into Eq. �34�, together with standard power series
expansions, yields

F0�w,z� =
1 − rz

1 − rwz
. �38�

Equation �38� gives F0�1,z�=1, which means that RN
0 =1.

The result RN
0 =1 is easily understood, because every network

must have at least one attractor, and thus a nonzero �0.
The limits ��L��, R�

L , and ��L��
G of ��L�N, RN

L , and ��L�N
G

as N→� are in many cases easy to extract. For power series
of z with convergence radii larger than one, we have the
operator relation

�� lim
N→�


1 +
�z

N
�N�

z=0

= �
z=1

, �39�

which means that the limit can be extracted by letting z=1 in
the given function. In the cases that fulfill the convergence
criterion above, we get

��L�� = FL�2,1� , �40�

R�
L = FL�1,1� , �41�

and

��L��
G = exp�ln 2��w�w=1 ln FL�w,1�� . �42�

With one exception, all of Eqs. �40�–�42� hold if r
1. The
exception is that Eq. �44� does not hold if L=0 and r�

1
2 .

Using the tools in Appendix B, we find that

��0�N ��
1 − r

1 − 2r
, for r 


1

2

1

2
��

2
N , for r =

1

2

��

2
Ne�ln 2r−1+1/�2r��N, for r �

1

2

� �43�

and

��0�N
G ��2r/�1−r�, for r 
 1

2��N/2, for r = 1,
� �44�

for large N. Note that the the leading term in the asymptote
of ��0�N for r�

1
2 comes from the pole in F0�2,z� at z

=1/ �2r�. If r�
1
2 , then z=1/ �2r� lies inside the contour �z

− 1
3 �= 2

3 , which is used as integration path in Appendix B. See
Appendixes C and D for examples on how to use the tech-
nique presented in Appendix B.

Only if r

1
2 do ��0�N and ��0�N

G have the same qualita-
tive behavior for large N. Otherwise the broad tail in the
distribution of �̂ dominates the value of ��0�N. If 1

2 
r
1,
��0�N

G approaches a constant, while ��0�N grows exponen-
tially with N. For the critical case, r=1, the qualitative dif-
ference lies in the power of N in the exponent.

For L�0, the difference between ��L�N and ��L�N
G is less

pronounced. Both ��L�N and ��L�N
G approach constants as

N→� if r
1, and they both grow like powers of N if r=1.
It is also worth noting that R�

L �0 for r
1, whereas R�
L =0 if

r=1 but �r
1. In the latter case, RN
L approaches zero like

N−1/�4�̃L�; see Appendix D. If r=1 and �r=1, i.e., the network
has only copy operators, RN

L =1 for all N�Z+.
In Appendix D, we investigate ��L�N and ��L�N

G, for L
�0, in detail for the case that r=1 and �r
1, which corre-
sponds to the most commonly occurring cases of critical net-
works. For large N, we have the asymptotic relations

��L�N � NUL �45�

for the arithmetic mean of the number of L cycle states, and

��L�N
G � NuL �46�

for the corresponding geometric mean, with the exponents
UL and uL given by Eqs. �D23� and �D17� in Appendix D.
For large L, we have

UL �
2L

2L
. �47�

The other exponent, uL, which appears in the scaling of
the geometric mean, is trickier to estimate. However, we de-
rive an upper bound from 
�����, where 
 is the Euler
function, as described in Appendix D. From this inequality,
combined with Eqs. �D17� and �D10�, we find that
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uL 

ln 2

2
d�L� , �48�

where d�L� is the number of divisors to L. To show that uL is
not bounded for arbitrary L, we let L=2m, where m�N, and
find that hL= �m+1� /2 and

uL =
ln 2

8
�m + 1� . �49�

Although ��L�N and ��L�N
G share the property that the

they grow like powers of N, the values of the powers differ
strongly in a qualitative sense. Yet neither case has an upper
limit to the exponent in the power law. Thus, the observation
that the total number of attractors grows superpolynomially
with N is true not only for the arithmetic mean, but also for
the geometric mean. This is consistent with the derivations in
Ref. �10�, that show that the typical number of attractors
grows faster than polynomially with N.

III. RESULTS

Our most important findings are the expression for the
expectation value of products of loop observables on the
graph of a random map �Eq. �15�� and the asymptotic expan-
sions �in Appendix B� for such quantities. Using these tools,
we derive new results on basic properties of random maps,
and on Boolean dynamics on the graph of a random map. In
the latter case, we investigate random Boolean networks with
in-degree one, and compare those to more complicated ran-
dom Boolean networks.

A. Random maps

For critical random Boolean networks with in-degree one,
all loops conserve information. This is because no constant
Boolean rules are allowed in a critical network. For such a
network, the number of information-conserving loops, �, is
also the number of components of the network graph. This
graph is also the graph of a random map. Thus, � can be
seen as the number of components in a random map. Analo-
gous to the interpretation of �, the number of nodes in
information-conserving loops, �̂, can be seen as the number
of elements in the invariant set of a random map.

We derive the probability distributions of � and �̂, in a
form that also can be obtained from other approaches
�20,21�. For critical networks, we derive asymptotic expan-
sions for the means and variances of � and �̂, and find that

��� =
1

2
�ln 2N + �� +

1

6
�2�N−1/2 + O�N−1� , �50�

�2��� =
1

2
�ln 2N + �� −

1

8
�2 +

1

6
�3 − 2 ln 2��2�N−1/2

+ O�N−1� , �51�

��̂� =
1

2
�2�N −

1

3
+

1

24
�2�N−1/2 + O�N−1� , �52�

and

�2��̂� =
1

2
�4 − ��N −

1

6
�2�N −

1

36
�3� − 8� + O�N−1/2� ,

�53�

where N is the number of nodes in the network, and � is the
Euler-Mascheroni constant. These expansions converge rap-
idly to corresponding exact values, for increasing N.

The leading terms 1
2 �ln 2N+�� of Eqs. �50� and �51� have

been derived earlier. See Refs. �18,28,29� on ��� and Refs.
�28,29� on �2���. The leading term of Eq. �52� is found in
Ref. �28�. The other terms in Eqs. �50�–�53� appear to be
new. Some additional terms are presented in Eqs.
�C23�–�C26�.

The technique presented in Appendix B let us also calcu-
late expansions for cumulants of higher orders. The leading
orders of the third and fourth cumulants for the distribution
of � give an interesting hint. Let ��3�c and ��4�c denote
those cumulants, respectively. Then, we get

��3�c = ��� +
7

4
��3� −

3

8
�2 + O�N1/2� �54�

and

��4�c = ��� +
21

2
��3� −

7

8
�2 −

1

16
�4 + O�N1/2� , �55�

where ��s� denotes the Riemann zeta function. All cumulants
from the first to the fourth order grow like 1

2 ln N. One could
guess that all cumulants have this property. If so, the distri-
bution of � is very closely related to a Poisson distribution
for large N. �Bear in mind that all cumulants for a Poisson
distribution are equal to the average for the distribution.�

Furthermore, it seems like the process of calculating
higher order cumulants, as well as including more terms in
the expansions, can be fully automated. As far as we know,
only a very limited number of terms, and only for mean
values and variances, have been derived in earlier work.

B. Random Boolean networks

Our main results from the analytical calculations are the
expressions that yield the arithmetic mean ��L�N, and the
geometric mean ��L�N

G, of the number of states in L cycles.
See Eqs. �34�–�37� on expressions for general N, and Eqs.
�40�–�49� on expressions valid for the high-N limit. In Ap-
pendix E, we present derivations that relate this work to re-
sults from Ref. �9�. These derivations yield an expression
suitable for calculation of exact values of ��L�N via a power
series expansion of the function FL�2,z� in Eq. �35�.

For the arithmetic means, the number of proper L cycles
�CL�N can be calculated from the number of states ����N in
all � cycles, provided that ����N is known for all � that
divide L. This is done via the inclusion-exclusion principle
as described in Supporting Text to Ref. �9�. For the corre-
sponding geometric means we cannot use a similar tech-
nique, because such means do not have the needed additive
properties.

Our results on random Boolean networks are divided into
two parts. First, we illustrate our quantitative results on net-

RANDOM MAPS AND ATTRACTORS IN RANDOM… PHYSICAL REVIEW E 72, 046112 �2005�

046112-7



works with in-degree one. To a large extent, the qualitative
results are expected from earlier publications.

From Ref. �11�, we know that in networks with in-degree
one, as N→�, the typical number of relevant variables ap-
proaches a constant for subcritical networks, and scales as
�N for critical networks. This indicates that for subcritical
networks, the average number of L cycles and the average
number of states in attractors are likely to approach constants
as N→�.

On the other hand, Ref. �6� points out that the probability
distributions of the number of cycles in critical networks
have very broad tails. Hence, the arithmetic mean can be
much larger than the median of the number of cycles, and
this may also be the case for subcritical networks. In Ref. �9�,
it is found that this effect leads to divergence as N→�, in
the mean number of attractors, for networks with the stability
parameter r in the range r�

1
2 . It is also found that the mean

number of cycles of any specific length L converges for large
N. For critical networks, it is clear that both the typical num-
ber and the mean number of attractors grow superpolynomi-
ally with N, in networks with in-degree one �14�.

Quantitative results that reflect the above properties for
networks of finite sizes are, however, for the most part highly
non-trivial to obtain from earlier work. We let Figs. 1–4
illustrate our results in this category. Regarding Fig. 3, it is
important to note that the geometric mean of the number of
states in attractors can be obtained directly from Ref. �11�.

In the second part of our results on random Boolean net-
works, we compare networks with multi-input nodes to net-
works with single-input nodes. From a system theoretic
viewpoint, this part is the most interesting, because a general
understanding of the multi-input effects vs single-input ef-
fects in dynamical networks would be very valuable. Al-
though this issue have been addressed before, in, e.g., Refs.
�8,11�, our results are only partly explained. These results are
illustrated in Figs. 5–8.

Figure 1 shows the numbers of attractors of various short
lengths as a function of system size, plotted for different
values of the stability parameter r. We let �r=0, correspond-
ing to equal probabilities of inverters and copy operators in
the networks. For critical networks, with r=1, the asymptotic
growth of the average number of proper L cycles, �CL�N, is a
power law, while �CL�N approaches a constant for subcritical
networks as N goes to infinity.

For networks with �r�0, the prevalences of copy opera-
tors and inverters are not identical. Cycles of even length are
in general more common then cycles of odd length. An over-
abundance of inverters strengthens this difference, and con-
versely a lower fraction of inverters makes the difference
less pronounced. See Fig. 2, which shows the symmetric
case �r=0 and the extreme cases �r= ±r.

The total number of attractors, �C�N, and the total number
of states in attractors, ��0�N, can diverge for large N, even
though the number of attractors of any fixed length con-
verges. This is true for subcritical networks with r�

1
2 , and is

illustrated in Figs. 3 and 4�a�. The growth of ��0�N is expo-
nential if r�

1
2 . Interestingly, there is no qualitative differ-

ence in the growth of ��0�N when comparing the critical case
of r=1 to the subcritical ones with 1�r�

1
2 .

For r

1
2 , both �C�N and ��0�N converge to constants for

large N. In the borderline case r= 1
2 , ��0�N diverges like a

square root of N, but �C�N seems to approach a constant. See
Fig. 4�b�.

The number of states in attractors, �0, of a single-input
node network is directly related to the total number of nodes,
�̂, that are part of information-conserving loops. Every state
of those nodes corresponds to a state in an attractor, and vice
versa. Thus, �0=2�̂, meaning that

��0�N = �2�̂� �56�

and

��0�N
G = 2��̂�. �57�

If 1
2 
r�1, ln��0�N grows linearly with N. This stands in

sharp contrast to ��̂�, which grows like �N for r=1 and
approaches a constant for r
1 as N→�. Hence, the distri-

FIG. 1. The average number of proper L cycles as a function of
N for different L, for networks with single-input nodes. r=1 in �a�,
and r= 3

4 �solid lines�, and r= 1
2 �dotted lines� in �b�. In �a�, L is

indicated in the plot. In �b�, L is 3, 5, 7, 1, 2, 4, 6, and 8 for r= 3
4 and

7, 5, 3, 8, 6, 4, 2, and 1 for r= 1
2 , in that order, from bottom to top

along the right boundary of the plot area. In �b�, the curves for L
=3 and L=5 for r= 3

4 essentially coincide at the right side of the
plot, whereas they split up to the left, with L=3 as the upper curve
there.
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bution of �̂ has a broad tail that dominates ��0�N if r�
1
2 .

This can be understood from the limit distribution of �̂ for
large N. For this distribution, we have P���̂=k��rk, which
means that r must be smaller than 1

2 for the sum of 2kP���̂
=k� over k to be convergent. Similar, but less dramatic, ef-
fects occur when forming averages of �L for L�0. The
arithmetic mean is in many cases far from the typical value.
This is particularly apparent for long cycles in large net-
works that are critical or close to criticality.

In Ref. �10�, it is shown that the typical number of attrac-
tors grows superpolynomially with N in critical random
Boolean networks with connectivity one. From a different
approach, we find the consistent result that �C�N

G grows su-
perpolynomially, where �C�N

G is the geometric mean of the
number of attractors. We conclude this from our investiga-
tions of the geometric mean of the number of states in L
cycles, ��L�N

G. Here, we use the inequality �C�N
G� ��L�N

G/L,
and the result that there is no upper bound to hL in the rela-

tion ��L�N
G�NhL, which holds asymptotically for large N �see

Eq. �49��.
All the properties above are derived and calculated for

networks with one-input nodes, but they seem to a large
extent to be valid for networks with multi-input nodes. From
Ref. �9�, we know that for subcritical networks the limit of
�CL�N as N→� is only dependent on r and �r. Hence, we
can expect that �CL�N for a subcritical network with multi-
input nodes can be approximated with �CL�N� , calculated for a
network with single-input nodes, but with the same r and �r.

In the networks in Ref. �9� the in-degree of each node is
drawn from a power law distribution, and a node cannot have
more than one input from any one node. The rules come
from a distribution of nested canalizing functions that confer
a high degree of stability. For these networks, the single-
input approximation fits surprisingly well, as is demonstrated
in Fig. 5. Not only are the means of the numbers of attractors

FIG. 2. The average number of proper L cycles for networks
�with one-input nodes� with N=100 and r= 3

4 , as function of L.
�r= 3

4 �thin solid line�, �r=0 �thick solid line� and �r=− 3
4 �dotted

line�. Note the importance of what numbers divide L.

FIG. 3. Arithmetic and geometric means of the number of states,
�0, in attractors of networks with one input per node. ��0�N �solid
lines� and ��0�N

G �dotted lines� for r= 1
2 , r= 3

4 and r=1, in that order,
from the bottom to the top of the plot. Note that both ��0�N and
��0�N

G are independent of �r.

FIG. 4. The arithmetic mean of the number of attractors with
lengths L�Lmax in networks with N single-input nodes, for differ-
ent values of N. In �a� N=10,102 , . . . ,105 for r=1 �thin solid lines�
and N=10, . . . , 104 for r= 3

4 �thin dotted lines�. In �b� N
=10, 102 , 103 �thin solid lines� for r= 1

2 and N=10 for r= 1
4 �thin

dotted line�. For all cases, �r=0. The thick lines in �a� and �b� show
the limiting number of attractors when N→�. The arrowhead in �b�
marks this limit for Lmax=107 for r= 1

2 . The small increase in the
number of attractors when Lmax is changed from 103 to 107 indi-
cates that �C�N converges when N→�. Note the drastic change in
the y-scale between the case r�

1
2 and r�

1
2 .
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of different types reproduced by this approximation, but the
distributions of these numbers are also very similar, as is
shown in Fig. 6.

For the critical Kauffman model with in-degree two, we
perform an analogous comparison. The number of nodes that
are non-constant grows like N2/3 for large N �3,13�. Further-
more, the effective connectivity between the non-constant

nodes approaches one for large N �8�. Hence, one can expect
that this type of N-node Kauffman networks can be mim-
icked by networks with N�=N2/3 one-input nodes. For those
networks, we choose r=1 and �r=0, which are the same
values as for the Kauffman networks.

For large N, �CL�N in the Kauffman networks grows like
N�HL−1�/3, where HL is the number of invariant sets of L cycle
patterns �13�. For the selected networks with one-input
nodes, we have �CL�N� �N��HL−1�/2�N�HL−1�/3 for large N�, see
Eq. �D23�. This confirms that the choice N�=N2/3 is reason-
able, but it does not indicate whether the proportionality fac-
tor in N��N2/3 is anywhere close to one. This factor could
also be dependent on L, as can be seen from the calculations
in Ref. �13�. However, this initial guess turns out to be sur-
prisingly good, as is shown in Fig. 7�a�.

FIG. 5. A comparison between simulations for power law in-
degree networks of size N=20 �bold lines� and the corresponding
networks with single-input nodes �thin lines�. The fitted networks
have identical values for r, �r, and N. The solid lines show the
number of fixed points, whereas the dashed and dotted lines show
the number of two cycles plus fixed points and the total number of
attractors, respectively. The probability distribution of in-degrees
satisfies pK�K−�, where K is the number of inputs. The power law
networks use the nested canalyzing rule distribution presented in
Ref. �9�.

FIG. 6. A cross-section of Fig. 5 at �=2.5, with simulation
results for the power law in-degree networks �bold lines�, and the
corresponding single-input networks �thin lines�. The distributions
of the number of attractors of different types are presented with
cumulative probabilities, along with the corresponding means �short
vertical lines at the bottom of the plot�. The solid lines show the
number of fixed points, whereas the dashed and dotted lines show
the number of two cycles plus fixed points and the total number of
attractors, respectively. Note that the medians are found where the
curves for the probability distributions intersect 1

2 on the y-axis.

FIG. 7. A comparison between critical K=2 Kauffman networks
�thick lines� and the corresponding networks of single-input nodes
�thin lines�. The size of the single-input networks is set to N�
=N2/3. r=1 and �r=0, consistent with the Kauffman model. �a� The
number of proper L cycles for the L indicated in the plot. For the
Kauffman networks, the numbers have been calculated from Monte
Carlo summation for those network sizes where could could not be
calculated exactly �see Ref. �13��. The number of fixed points is
one, independently of N, for both network types. �b� Total number
of attractors. This quantity has been calculated analytically for the
single-input networks, and estimated by simulations for the Kauff-
man networks using 102, 103, 104, and 105 random starting configu-
rations per network.
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From the good agreement for short cycles, one can expect
a similar agreement on the mean of the total number of at-
tractors. This is investigated in Fig. 7�b�. For networks with
up to about 100 nodes, the agreement is good, and the ex-
tremely fast growth of �C�N� for larger N is consistent with
the slow convergence in the simulations.

As with the power law networks, we also compare the
distributions of the numbers of different types of attractors,
and find a very strong correspondence. See Fig. 8. Further-
more, we see indications of undersampling, in the estimated
numbers of fixed points and two cycles, for the Kauffman
networks in Fig. 8, as the means from the simulations are
smaller than the corresponding analytical values.

IV. SUMMARY AND DISCUSSION

Using analytical tools, we have investigated random
Boolean networks with single-input nodes, along with the
corresponding random maps. For random Boolean networks,
we extract the exact distributions of the average number of
cycles with lengths up to 1000 in networks with up to 105

nodes. As has been pointed out in earlier work �6�, we see
that a small fraction of the networks have many more cycles
than a typical network. This property becomes more pro-
nounced as the system size grows, and has drastic effects on
the scaling of the average number of states that belong to
cycles.

The graph of a random Boolean network of single input
nodes can be seen as a graph of a random map. Our analyti-
cal approach is not only applicable to Boolean dynamics on
such a graph, but also to random maps in general. Using this
approach, we rederive some well-known results in a system-
atic way, and derive some asymptotic expansions with sig-
nificantly more terms than have been available from earlier
publications. In future research, it would be interesting to,
e.g., see to what extent the ideas from Ref. �30� and our
paper can be combined.

Our results on random Boolean networks highlight some
previously observed artifacts. The synchronous updates lead
to dynamics that largely is governed by integer divisibility
effects. Furthermore, when counting attractors in large net-
works, most of them are found in highly atypical networks
and have attractor basins that are extremely small compared
to the full state space. We quantify the role of the atypical
networks by comparing arithmetic and geometric means of
the number of states in L cycles. From analytical expres-
sions, we find strong qualitative differences between those
types of averages.

The dynamics in random Boolean networks with multi-
input nodes can to a large extent be understood in terms of
the simpler single-input case. In direct comparisons to criti-
cal Kauffman networks of in-degree two and to subcritical
networks with power law in-degree, the agreement is surpris-
ingly good.

In Ref. �17�, a new concept of stability in attractors of
Boolean networks is presented. To only consider that type of
stable attractors is one way to make more relevant compari-
sons to real systems. Another way is to focus on fixed points
and stability properties as in Refs. �16,9�. Furthermore, the
limit of large systems may not always make sense in com-
parison with real systems. Small Boolean networks may tell
more about these than large networks would.

Although there are problems in making direct compari-
sons between random Boolean networks and real systems,
we think that insight into the dynamics of Boolean networks
will improve the general understanding of complex systems.
For example, can real systems have lots of attractors that are
never visited due to small attractor basins, and what impli-
cations could such attractors have on the system?

A better understanding of single-input vs multi-input dy-
namics in Boolean networks could promote a better under-
standing of similar effects in more complicated dynamical
systems. For the random Boolean networks, additional in-
sights are required to properly explain the strong similarities
between the single-input and multi-input cases. One interest-
ing issue is to what extent a single-input approximation can
be applied to networks with random rules on a fixed network
graph.
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APPENDIX A: FUNDAMENTAL EXPRESSIONS
FOR PRODUCTS OF LOOP OBSERVABLES

Equation �4� inserted into Eq. �3� and a transformation of
the summation yield

FIG. 8. A cross-section of Fig. 7 at N=125, with simulation
results for the Kauffman networks �bold lines�, and the correspond-
ing single-input networks �thin lines�. For the Kauffman networks,
we use 105 random starting configurations for 1600 network real-
izations. The corresponding single-input node networks have only
N�=N2/3=25 nodes, and we perform exhaustive searches through
the state space of the relevant nodes in 106 such networks. The
distributions of the number of attractors of different types are pre-
sented with cumulative probabilities, along with the corresponding
averages �short vertical lines at the top and bottom of the plot�.
Corresponding analytical averages, for the Kauffman networks, are
marked with arrowheads. The solid lines show the number of fixed
points, whereas the dashed and dotted lines show the number of two
cycles plus fixed points and the total number of attractors, respec-
tively. Note that the medians are found where the curves for the
probability distributions intersect 1

2 on the y-axis.
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���N�

�̂

N

N!

�N − �̂�!N�̂ 

�=1

�
1

��!

 �g��

�
���

�A1�

=�
�=1

�

�
���Z+

�

�̂

N

N!

�N − �̂�!N�̂

1

�!
i=1

� �g��i

�i
. �A2�
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equal terms in Eq. �A2�.
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The coefficients cN
k can be expressed as
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This relation, together with �̂=�i=1
� �i, inserted into Eq. �A4�

gives

�G�N = �
1 +
�z

N
�N�

z=0
�
�=1

�
1

�! �
���Z+

�

�1 − z�

i=1

� �g��i

�i
z�i

= �
1 +
�z

N
�N�

z=0
�1 − z��

�=1

�
1

�!

�

�=1

�
�g��

�
z���

.

�A6�

The outer sum in Eq. �A6� can be modified to start from
�=0 without altering the value of the expression. This prop-
erty, together with the power series expansions

ex = �
k=0

�
xk

k!
�A7�

and

ln�1 − x� = − �
k=1

�
xk

k
, �A8�

yields that Eq. �A6� can be rewritten into Eq. �6�.

APPENDIX B: ASYMPTOTES FOR PRODUCTS OF LOOP
OBSERVABLES

To calculate Eq. �15� for large N, we investigate the op-
erator ��1+�z /N�N�z=0. Let f�z� be a function that is analytic
for z�1, such that �z− 1

3 �� 2
3 . Furthermore, we assume that

f�z� does not have an essential singularity at z=1. Then,

�
1 +
�z

N
�N�

z=0
f�z� = � �z

N

NN�
z=0

eNzf�z� �B1�

=
N!

2�i
�

C���
dz

eNz

zN+1 f�z� , �B2�

where � is a small positive number, and C��� is the contour
of the region where z satisfies �z− 1

3 �� 2
3 and �z−1���.

On the curve C���, �eNz /zN� is maximal close to z=1,
where this expression has a saddle point. Thus, the main
contribution to the integral in Eq. �B2�, for large N, comes
from the vicinity of z=1. Contributions from other parts of
C��� are suppressed exponentially with N.

To find the asymptotic behavior of Eq. �B2�, we perform
an expansion of f�z� around z=1 with terms of the form
c�−ln�1−z��m�1−z�−a, where a, c�R, and m�N. Provided
that the expansion has a non-zero convergence radius, the
asymptote of Eq. �B2� can be determined to any polynomial
order of N.

We start at the special case of f�z�= �1−z�−a. For non-
integral a, z=1 is a branch point of f�z�. For such a we let
f�z� be real-valued for real z
1 and have a cut line at real
z�1. For N�max�0,−a�, we can change the integration
path in Eq. �B2�. Let C���� follow the line Re�z�=1 but make
a turn about z=1 in the same way as C���. Then,

�
C���

dz
eN�z−1�

izN+1 f�z� = �
C����

dz
eN�z−1�

izN+1 f�z� . �B3�

From Stirling’s formula �31�,

N! =
nN

eN
�2�N exp� 1

12N
+ O�N−2�� , �B4�

and Eq. �B3�, we get

�
1 +
�z

N
�N�

z=0
f�z� =� N

2�
�1 +

1

12N
+ O�N−2��

	 �
C����

dz
eN�z−1�

izN+1 f�z� . �B5�

Around z=1, we have eN�z−1� /zN�exp� 1
2N�z−1�2�. This

approximation can be used as a starting point for a suitable
expansion. To proceed, we note that we can write

� N

2�
�

C����

dz

i
exp�1

2
N�z − 1�2��1 − z�−a = Z�a�Na/2,

�B6�

where

Z�a� �
− i

�2�
�

C����
dz exp�1

2
�z − 1�2��1 − z�−a. �B7�

From the fast convergence of exp� 1
2 �z−1�2� along Re�z�=1

for large �z�, it is clear that a�Z�a� is well defined and
continuous for all a.

With y=1−z, we get
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eN�z−1�

zN+1 �1 − z�−a = exp�N�− y − ln�1 − y��	
y−a

1 − y
�B8�

=exp
1

2
Ny2�y−a�1 + y +

1

3
Ny3 + y2

+
7

12
Ny4 +

1

18
N2y6 + y3 +

47

60
Ny5

+
5

36
N2y7 +

1

162
N3y9 + O�y4�

+ NO�y6� + N2O�y8� + N3O�y10�

+ ¯ � . �B9�

We insert this result into Eq. �B5�, and get

�
1 +
�z

N
�N�

z=0
�1 − z�−a = Na/2��

k=0

3

Zk�a�N−k/2 + O�N−2�� ,

�B10�

where

Z0�a� = Z�a� , �B11�

Z1�a� = Z�a − 1� +
1

3
Z�a − 3� , �B12�

Z2�a� =
1

12
Z�a� + Z�a − 2� +

7

12
Z�a − 4� +

1

18
Z�a − 6� ,

�B13�

and

Z3�a� =
1

12
Z�a − 1� +

37

36
Z�a − 3� +

47

60
Z�a − 5� +

5

36
Z�a − 7�

+
1

162
Z�a − 9� . �B14�

Iterated differentiation of Eq. �B10� with respect to a
gives

�
1 +
�z

N
�N�

z=0
�− ln�1 − z��m�1 − z�−a

= Na/2
1

2
ln N + �a�m��

k=0

3

Zk�a�N−k/2 + O�N−2�� .

�B15�

It remains for us to calculate Z�a�. For a
1, Eq. �B7� can
be rewritten as

Z�a� =
1

�2�
�

−�

�

dx exp
−
1

2
x2��− ix�−a, �B16�

which means that

Z�a� = 2−a/2�−1/2 cos
1

2
�a��
1

2
−

1

2
a� �B17�

for a
1. From Eq. �B7� and partial integration, we find that

Z�a − 2� = �a − 1�Z�a� , �B18�

which is consistent with Eq. �B17�. Hence, Eq. �B17� is valid
for all a, provided that the right hand side is replaced with an
appropriate limit in case that a is an odd positive integer. The
use of the limit is motivated by the continuity of Z.

The recurrence relation in Eq. �B18� is useful for express-
ing Z1, Z2, and Z3 in more convenient forms. Insertion into
Eqs. �B11�–�B14� and factorization of the obtained polyno-
mials gives

Z0�a� = Z�a� , �B19�

Z1�a� =
1

3
�a + 1�Z�a − 1� , �B20�

Z2�a� =
1

36
a�a + 2��2a − 1�Z�a� , �B21�

and

Z3�a� =
1

1620
�a + 1��a + 3��10a2 − 15a − 1�Z�a − 1� .

�B22�

To express Z�a� in a more convenient form than Eq.
�B17�, we use the relations

cos x = 

k=0

�

�1 −
x2


k +
1

2
�2

�2� �B23�

and

��x� =
e�x

x


k=1

� 
1 +
x

k
�ex/k, �B24�

where � is Euler-Mascheroni constant. See, e.g., Ref. �32� on
Eqs. �B23� and �B24�. We now get

Z�a� = 2a/2ea�/2

k=0

� 
1 +
a

2k + 1
�exp
−

a

2k + 1
� �B25�

and

Z�a� = 2a/2

�
1

2
a�

2��a�
�B26�

=2a/2

1

2
a�!

a!
. �B27�

The first and second order derivatives of Z�a� can be ex-
pressed according to
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Z��a� = Z�a��a ln Z�a� �B28�

and

Z��a� = Z�a��a
2 ln Z�a� + Z�a���a ln Z�a��2, �B29�

with

�a ln Z�a� =
1

2
�ln 2 + �� − �

k=0

�
a

�2k + 1��2k + 1 + a�

�B30�

and

�a
2 ln Z�a� = − �

k=0

�
1

�2k + 1 + a�2 . �B31�

When the values and derivatives of Z�a� are calculated for
a=0 and a=1, one can use the recurrence relation, Eq.
�B18�, to calculate the corresponding properties for any a
�Z. See, e.g., Ref. �33� on infinite sums that are useful in
those derivations.

APPENDIX C: STATISTICS FOR INFORMATION
CONSERVING LOOPS

Insertion of Eq. �17� into Eqs. �18� and �19� gives

PN�� = k� = �wk��
1 +
�z

N
�N�

z=0
�1 − rz�1−w �C1�

and

PN��̂ = k� = �wk��
1 +
�z

N
�N�

z=0

1 − rz

1 − rwz
. �C2�

An alternative form of the probability generating function
in Eq. �C1�, for the special case r=1, is presented in Ref.
�30�. However, this alternative expression is complicated in
comparison to Eq. �C1�, and it is much easier to extract the
probability distribution and corresponding cumulants, along
with their asymptotic expansions, from Eq. �C1�. In Ref.
�30�, general considerations for probability generating func-
tions are presented, along with several examples of such
functions.

For a power series of z with convergence radius larger
than one, we have the operator relation

�� lim
N→�


1 +
�z

N
�N�

z=0

= �
z=1

, �C3�

which means the limit can be extracted by inserting z=1 in
the given function. In Eqs. �C1� and �C2�, w can be regarded
as an arbitrarily small number, which gives arbitrary large
convergence radii in the corresponding power expansions in
z. Hence, the limiting probabilities for large N are given by

P��� = k� = �wk��1 − r�1−w �C4�

=�1 − r�
�− ln�1 − r��k

k!
�C5�

and

P���̂ = k� = �wk�
1 − r

1 − rw
�C6�

=�1 − r�rk. �C7�

Both limiting distributions are normalized for r
1, but
not for r=1. This means that the probability distributions
remains localized for subcritical networks as N goes to infin-
ity. For critical networks, the probabilities approach zero,
which means that the typical values of � and �̂ must diverge
with N.

Note that Eq. �C5� corresponds to a Poisson distribution
with intensity ln�1/ �1−r��, and that the probabilities in Eq.
�C7� decay exponentially with rate r. For �, we get

��� = �
1 +
�z

N
�N�

z=0
�− ln�1 − rz�� �C8�

=�
k=1

N
N!rk

k�N − k�!Nk �C9�

and

��2� = �
1 +
�z

N
�N�

z=0
ln�1 − rz��ln�1 − rz� − 1�

�C10�

=�
k=1

N
N!rk

k�N − k�!Nk
1 + 2�
j=1

k−1
1

j
� . �C11�

If r=1, � can be seen as the number of components in a
random map. For random maps, the result in Eq. �C9� is
well-known and has been derived in several different ways
�18–21�. Alternative derivations of Eq. �C11� are found in
Refs. �20,21�.

The distribution of � can be calculated from Eq. �C1�. To
this end, we consider the series expansion

�1 − x�−w = �
n=0

�
xn

n!�k=0

n �n

k
�wk, �C12�

where � n
k
� are the sign-less Stirling numbers �see, e.g., Ref.

�34��. Insertion into Eq. �C1� yields

PN�� = k� = �
n=k

N
rn

Nn
N

n
�
�n − 1

k − 1
� − �n − 1

k
�� �C13�

=�
n=k

N
rn

Nn
N

n
�
�n

k
� − n�n − 1

k
�� �C14�

=�
n=k

N
rn

Nn
1 − r +
nr

N
�
N

n
��n

k
� . �C15�

For the number of nodes in information-conserving loops,
Eq. �C2� yields
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PN��̂ = k� =
rk

Nk
1 − r +
kr

N
�
N

k
�k!. �C16�

For r=1, Eq. �C16� is consistent with the corresponding re-
sults on the distribution of the number of invariant elements
in random maps �19�.

Also, Eq. �C16� provides a simpler way to derive Eq.
�C15�. It is well known that the probability for a random
permutation of n to have k cycles is given by

1

n!
�n

k
�

�see, e.g., Ref. �19��. Consider all nodes in information-
conserving loops of a Boolean network with in-degree one.
We denote the set of such nodes by S. If we randomize the
network topology, under the constraint that S is given, the
network graph in S will also be the graph of a random per-
mutation of the elements in S. Then, every cycle in this per-
mutation corresponds to an information-conserving loop in
the network. In Refs. �21,28�, the corresponding observation
for random maps was made.

When the network topology is randomized to fit with a
given S, only the size �̂ of S matters. Thus,

PN�� = k��̂ = n� =
1

n!
�n

k
� . �C17�

Summation over all possible values of �̂ gives

PN�� = k� = �
n=k

N

PN�� = k��̂ = n�PN��̂ = n� , �C18�

which together with Eqs. �C16� and �C17� provides a simpler
derivation of Eq. �C15�. An analogous derivation for random
maps is presented in Ref. �21�.

For the first and second moments of �̂, we find that

��̂� = �
1 +
�z

N
�N�

z=0

rz

1 − rz
�C19�

=�
k=1

N
N!rk

�N − k�!Nk �C20�

and

��̂2� = �
1 +
�z

N
�N�

z=0

rz�1 + rz�
�1 − rz�2 �C21�

=�
k=1

N
�2k − 1�N!rk

�N − k�!Nk . �C22�

To better understand the results on ���, ��2�, ���, and
��2�, we let r=1 and calculate their asymptotes for large N.
For r=1, � corresponds to the number of components in a
random map, while �̂ corresponds to the number of elements
in its invariant set.

From Eq. �B15�, we find the large-N asymptotes of ��1
+�z /N�N�z=0 operating on −ln�1−z�, �ln�1−z��2, �1−z�−1, and
�1−z�−2. We also note that ��1+�z /N�N�z=01=1 for all N.

From these asymptotes, combined with Eqs. �C9�, �C11�,
�C20�, and �C22� for r=1, we get

��� =
1

2
�ln 2N + �� +

1

6
�2�N−1/2 −

1

18
N−1

−
1

1080
�2�N−3/2 + O�N−2� , �C23�

�2��� =
1

2
�ln 2N + �� −

1

8
�2 +

1

6
�3 − 2 ln 2��2�N−1/2

−
1

18
�� − 2�N−1 −

1

3240
�41 − 6 ln 2��2�N−3/2

+ O�N−2� , �C24�

��̂� =
1

2
�2�N −

1

3
+

1

24
�2�N−1/2 −

4

135
N−1 + O�N−3/2� ,

�C25�

and

�2��̂� =
1

2
�4 − ��N −

1

6
�2�N −

1

36
�3� − 8� +

17

1080
�2�N−1/2

+ O�N−1� . �C26�

Note that the potential term of order N−2 ln N in Eq. �C24�
disappears due to cancellation when ���2 is subtracted from
��2�.

APPENDIX D: ASYMPTOTES RELATED TO BOOLEAN
DYNAMICS

We take a closer look at the case that r=1 and �r
1.
Equation �34� yields

FL�1,z� = � 1 − z�̃L

1 − ��rz��̃L
�1/�2�̃L�

. �D1�

To the leading order in 1−z, we get

FL�1,z� = � �̃L�1 − z�

1 − ��rz��̃L
�1/�2�̃L�

�1 + O�1 − z�� . �D2�

Insertion into Eqs. �36� and �B10� gives

RN
L = Z
 − 1

2�̃L
�� �̃L

1 − ��r��̃L
�1/�2�̃L�

N−1/�4�̃L��1 + O�N−1/2�� .

�D3�

To find the asymptote of ��L�N
G, we apply Eq. �34� and

find that
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��w�w=1FL�w,z� = 
�
�=1

�
gcd��,L�

�
z� − �

k=1

�
gcd�k�̃L,L�

2k�̃L

	�1 − ��r�k�̃L�zk�̃L�� 1 − z�̃L

1 − ��rz��̃L
�1/�2�̃L�

.

�D4�

Let 
 denote the Euler function. The Euler function is
defined for n�Z+ in such a way that 
�n� is the number of
values, k� �1,2 , . . . ,n	, that satisfy gcd�k ,n�=1. If m di-
vides n, 
�n /m� is the number of values, k� �1,2 , . . . ,n	,
that satisfy gcd�k ,n�=m. From summing over every m�N
that divides n, we get

�
m�n


�m/n� = n , �D5�

which means that

�
k�n


�k� = n . �D6�

From Eq. �D6�, we see that

�
�=1

�
gcd��,L�

�
z� = − �

��L


���
�

ln�1 − z�� . �D7�

Similarly, we rewrite Eq. �D4� and get

��w�w=1FL�w,z� = ��
��L


���
�

ln
1

1 − z�

+ �
��L/�̃L


���
2�

ln
1 − z��̃L

1 − ��rz���̃L
�

	 � 1 − z�̃L

1 − ��rz��̃L
�1/�2�̃L�

. �D8�

Again, we perform an expansion around z=1 and get

��w�w=1FL�w,z� = �− ĥL +
1

2
�ĥL/�̃L

+ hL/�̃L
ln �̃L� + sL

− 
hL −
1

2
hL/�̃L

�ln�1 − z��
	� �̃L

1 − ��rz��̃L
�1/�2�̃L�

�1 + O�1 − z�� ,

�D9�

where

hL � �
��L


���
�

, �D10�

ĥL � �
��L


���
�

ln � , �D11�

and

sL � �
��L/�̃L


���
2�

ln
1

1 − ��rz���̃L

. �D12�

For convenience, we define

AL = − ĥL +
1

2
�ĥL/�̃L

+ hL/�̃L
ln �̃L� + sL �D13�

and

BL = hL −
1

2
hL/�̃L

. �D14�

Insertion of

��w�w=1FL�w,z� = �AL − BL ln�1 − z���1 + O�1 − z��
�D15�

into Eq. �37�, combined with Eqs. �B15� and �D3�, gives

��L�N
G = exp��ln 2��AL +

1

2
BL ln N + BL

Z�
 − 1

2�̃L
�

Z
 − 1

2�̃L
� ��

	�1 + O�N−1/2�� . �D16�

This means that ��L�N
G grows like a power law, NuL, where

the exponent is given by

uL =
ln 2

2

hL −

1

2
hL/�̃L

� . �D17�

Finally, we derive the asymptote of ��L�N. From Eq. �E4�
we get

FL�2,z� =
SLe−ĤL

�1 − z�HL−1 �1 + O�1 − z�� �D18�

to the leading order in powers of 1−z, where

HL � �
��L

J�
+ + �

2��L
J�

−, �D19�

ĤL � �
��L

J�
+ ln � + �

2��L
J�

− ln � , �D20�

and

SL � 

��L


 1

1 − ��r���J�
+



2��L


 1

1 + ��r���J�
−

. �D21�

The same procedure as for the other asymptotes lets us find
the asymptote of Eq. �35�. We obtain

��L�N = SLe−ĤLN�HL−1�/2�1 + O�N−1�� . �D22�

Hence, ��L�N grows like a power law, NUL, where
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UL =
HL − 1

2
. �D23�

Note that HL is identical to the number of invariant sets of L
cycle patterns, as defined in Ref. �13�.

APPENDIX E: AN ALTERNATIVE EXPRESSION FOR
FL„2,z…

In Ref. �13�, we found that

��L�� = �1 − r�

��L


 1

1 − r�

1

1 − ��r���J�
+

	 

2��L


 1

1 − r�

1

1 + ��r���J�
−

, �E1�

where J�
± are integers that can be calculated via the inclusion-

exclusion principle. J�
− satisfies the relation

2�J�
− = �

s��0,1	��

�− 1�s2�/d��s�, �E2�

where s=� j=1
�� sj, d��s�=
 j=1

�� �d�
j �sj, and d�

1 , . . . ,d�
�� are the odd

prime divisors to �. Furthermore,

J�
+ = J�

− − J�/2
− , �E3�

where we use the convention that J�/2
− =0 for odd �.

From Eq. �E1�, we can expect that

FL�2,z� = �1 − rz�

��L


 1

1 − �rz��

1

1 − ��rz���J�
+

	 

2��L


 1

1 − �rz��

1

1 + ��rz���J�
−

. �E4�

This is indeed true, and to see that, we rewrite Eq. �E4� via
the power series expansion

ln
1

1 − x
= �

k=1

�
1

k
xk, �E5�

and get

FL�2,z� = �1 − rz�exp �
��L

�
k=1

�
�J�

+

k�
�rk� + ��r�k��zk�

	 exp �
2��L

�
k=1

�
�J�

−

k�
�rk� + �− 1�k��r�k��zk�.

�E6�

A change of the summation order, with �=k�, yields

FL�2,z� = �1 − rz�exp �
�=1

�

�
��gcd��,L�

�J�
+

�
�r� + ��r���z�

	 exp �
�=1

�

�
��gcd��,L�

2�L/�

�J�
−

�
�r� + �− 1��/���r���z�.

�E7�

Equation �E7� is consistent with Eq. �34�, provided that

�
��gcd��,L�

�J�
+ + �

��gcd��,L�

2�L/�

�J�
− = 2gcd��,L��1, if �̃L�”�

1

2
, if �̃L�� , �

�E8�

and

�
��gcd��,L�

�J�
+ + �

��gcd��,L�
2�L/�

�− 1��/��J�
− = 2gcd��,L��0, if �̃L�”�

1

2
, if �̃L�� . �

�E9�

The sum of Eqs. �E8� and �E9� is given by

�
��gcd��,L�

2�J�
+ + �

2��gcd��,L�
2�J�

− = 2gcd��,L�, �E10�

which is equivalent to

�
��gcd��,L�

�2�J�
+ + �J�/2

− � = 2gcd��,L� �E11�

and

�
��gcd��,L�

�2�J�
− − �J�/2

− � = 2gcd��,L�. �E12�

Equation �E12� is true as a consequence of Eq. �E2�, and
hence Eq. �E10� is true.

The difference between Eqs. �E8� and �E9� is

�
��gcd��,L�

2�L/�
2�”�/�

2�J�
− = 2gcd��,L��1, if �̃L�”�

0, if �̃L��
� . �E13�

If �̃L ��, the sum in Eq. �E13� is empty and therefore equal to

the right hand side. If �̃L�”�, Eq. �E13� is equivalent to

�
��gcd��,L�

2� �”gcd��,L�

2�J�
− = 2gcd��,L�, �E14�

consistent with Eq. �E2�. Hence, Eq. �E13� holds, and this
result concludes the verification of Eqs. �E8� and �E9�. Thus,
we conclude that Eq. �E4� is correct.
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